CHỨNG TỎ:
\(\frac{2n+1}{3n+2}\) tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n+1 và 3n+2
Ta có: 2n+1 chia hết cho d và 3n+2 chia hét cho d
=> (2n+1) - (3n+2) chia hết cho d
=> 3(2n+1) - 2(3n+2) chia hết cho d
=> -1 chia hét cho d
=> d C Ư(-1)=[-1;1]
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
k mình nha KHÁNH HUYỀN
Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1
Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:
\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)
\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)
Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)
\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)
Vì \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.
Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.
Gọi d là UCLN của 2n +1 và 3n+2
2n+1\(⋮\)d
\(3n+2⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d
\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)
\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)
Gọi UCLN(2n + 1 ; 3n + 2) = d
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
=> [(6n + 4) - (6n + 3)] chia hết cho d
1 chia hết cho d => d = 1
Vì UCLN(2n + 1 ; 3n + 2) = 1
Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)
Lời giải:
Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)
=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \((6n+4)-(6n+3)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi d=ƯCLN(2n+1;3n+2)
Ta có 2n+1 : d
3n+2 :d ( mình viết dấu : thay cho dấu chia hết nhé)
=>3(2n+1) :d
2(3n+2):d
=>6n+3 :d
6n+4 :d
=> (6n+4)-(6n+3):d
=>1:d
=>d=1
=> ƯCLN(2n+1;3n+2)=1
Vậy phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
gọi a là UCLN của tử và mẫu
suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a
ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a
từ hai điều trên suy ra
(6n+4)-(6n+3) chia hết cho a
suy ra 1 chia hết cho a
suy ra a=1
suy ra đpcm
Gọi ƯCLN (2n+1,3n+2)=d
\(\Rightarrow2n+1⋮d\)
\(3n+2⋮d\)
\(\Rightarrow3n+2-2n+1⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n+3⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Gọi UCLN(2n+1,3n+2)=d
Ta có: 2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d
3n+2 chia hết cho d \(\Rightarrow\)2(3n+2) chia hết cho d \(\Rightarrow\)6n+4 chia hết cho d
\(\Rightarrow\)(6n+4)-(6n+3) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d=1
Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản
gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
gọi ước chung lớn nhất của 2n+1 và 3n+1 là d (d thuộc N*)
=> 2n+1 chia hết cho d (1) , 3n+1 chia hết cho d (2)
Từ (1) => 3.(2n+1) chia hết cho d => 6n+3 chia hết cho d (3)
Từ (2) => 2( 3n+1) chia hết cho d => 6n+2 chia hết cho d (4)
Từ (3) và (4) =>( 6n+3) -(6n+2) chia hết cho d
=> 1chia hết cho d (5)
Mà d thuộc N* (6)
Từ (5) và (6) => d=1
Vậy ƯCLN ( 2n+1,3n+1) =1
=> ĐCCM
Gọi d là ( 2n + 1 ; 3n + 2 )
=> 3n+1 chia hết cho d
2n+1 chia hết cho d
=> 6n+2 chia hết cho d
6n+3 chia hết cho d
=> (6n+2)-(6n+3)
= 6n + 2 - 6n - 3
= 6n - 6n + 2 - 3
= -1 chia hết cho d
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\Rightarrow2n+1;3n+2\) là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\) tối giản
Gọi d là UCLN của 2n+1 và 3n+2
Khi đó 2n+1 chia hết cho d và 3n+2 chia hết cho d
=> 3(2n+1) chia hết cho d và 2(3n+2) chia hết cho d
Hay 6n+3 chia hết cho d và 6n+4) chia hết cho d
=>(6n+4)-(6n+3) chia hết cho d
=> 1 chia hết cho d
=> d =1
Vậy \(\frac{2n+1}{3n+2}\) Là p/s tối giản