K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!

Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.

Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:

$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$

Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:

$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)

⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$

⇒ $\(CH=DK=\dfrac{120}{13}\)$

Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:

$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$

Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$

26 tháng 6 2019

Bạn tham khảo link sau :

Câu hỏi của Lâm Tinh Thần - Toán lớp 9 | Học trực tuyến

https://h.vn/hoi-dap/question/384503.html

Hk tốt 

26 tháng 6 2019

mình không hiểu đoạn AD=BC=10cm là ở đâu ra

10 tháng 1 2017

2 đg chéo vuông góc vói nhau=>là hcn

dt hcn =dt ht cân

26x10=260 cm2

đ/s: 260 cm2

Ai tích mk mk sẽ tích lại

10 tháng 1 2017

đây là hình thang sao suy ra hcn đc

Kẻ CH,DK lần lượt vuông góc AB

ΔCAB vuông tại C 

=>CA^2+CB^2=AB^2

=>CA^2+10^2=26^2

=>CA=24cm

ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*26=10*24=240

=>CH=120/13(cm)

ΔCHB vuông tại H

=>HB^2+CH^2=CB^2

=>HB^2=10^2-(120/13)^2=2500/169(cm)

=>HB=50/13(cm)

Xét ΔDKA vuông tại K và ΔCHB vuông tại H có

DA=CB

góc DAK=góc CBH

=>ΔDKA=ΔCHB

=>KA=HB=50/13cm

KH=AB-AK-HB

=26-50/13*2=238/13(cm)

Xét tứ giác KDCH có

DC//KH

DK//CH

Do đó: KDCH là hình bình hành

=>DC=KH=238/13(cm)

S ABCD=1/2*(DC+AB)*CH

=1/2(238/13+26)*120/13

=34560/169(cm2)

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)

10 tháng 1 2018

a) DDBC vuông  có B C D ^ = 2 B D C ^  nên A D C ^ = B C D ^ = 60 0  và  D A B ^ = C B A ^ = 120 0

b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.

Hạ đường cao BK, ta có BK = 3 3 c m .

Vậy SABCD =  27 3 c m 2