K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

a/ x2 + xy + y2 + 1

= [x2 + 2.x.\(\dfrac{y}{2}\) + (\(\dfrac{y}{2}\) )2 ] + \(\dfrac{3y^2}{4}\) + 1

= ( x + \(\dfrac{y}{2}\) )2 + \(\dfrac{3y^2}{4}\) + 1

\(\left(x+\dfrac{y}{2}\right)^2\) \(\ge\) 0 với mọi x;y

\(\dfrac{3y^2}{4}\ge0\) với mọi x;y

=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}\ge0\) với mọi x;y

=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)

NV
5 tháng 7 2021

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

23 tháng 4 2016

\(B=\left(\frac{a+b}{c}\right)+\left(\frac{b+c}{a}\right)+\left(\frac{c+a}{b}\right)\)

\(\Leftrightarrow B=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow B=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Ta cần CM BĐT : \(\frac{a}{b}+\frac{b}{a}\ge2\)

Nhân 2 vế với ab,ta đc:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Leftrightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)

=>ĐPCM

CM tương tự với 2 BĐT còn lại

Cộng theo vế các BĐT,ta đc \(B\ge2+2+2=6\)

19 tháng 3 2018

BĐT Cosi cho 2 số a,b >0: 
a + b >= 2căn(ab) 

di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 

<=> a + b - 2√(ab) ≥ 0 

<=> a + b ≥ 2√(ab) 
dau "=" xay ra khi √a - √b = 0 <=> a = b 

19 tháng 3 2018

Ta có:\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)\(\forall a,b\ge0\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(đpcm\right)\)

31 tháng 3 2017

https://olm.vn/hoi-dap/question/41860.html

bn vào đây tham khảo nha

1 tháng 4 2017

bạn ơi sao mình bấm mag nó kg dc

29 tháng 9 2019

Bien doi tuong BDT 

\(\frac{x^2}{x-2}\ge8\)

\(\Leftrightarrow x^2\ge8x-16\)

\(\Leftrightarrow x^2-8x+16\ge0\)

\(\Leftrightarrow\left(x-4\right)^2\ge0\left(True\right)\)

Dau '=' xay ra khi \(x=4\)