a,1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
b, 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/5x6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1x2 + 1/2x3 + 1/3x4 +1/4x5 +1/5x6
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6 = 5/6
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)
\(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\)\(\frac{1}{5.6}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(\frac{1}{4}\)\(-\)\(\frac{1}{5}\)\(+\)\(\frac{1}{5}\)\(-\)\(\frac{1}{6}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{6}\)
\(=\)\(\frac{5}{6}\)
Hok tốt
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{5}-\frac{1}{6}\right)=1-\frac{1}{6}=\frac{5}{6}.\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\)
=>\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
=> 1-\(\frac{1}{6}\)
=\(\frac{6}{6}-\frac{1}{6}=\frac{6}{6}+\frac{-1}{6}=\frac{5}{6}\)
đặt A=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)