Chưng minh rằng:1/3^2+1/4^2+1/5^2+/6^2+....+1/100^2<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
1.Chưng minh rằng
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Xét: (1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100) =
(1+1/3+1/5+....+1/99) + (1/2+1/4+1/6+...+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1+1/2+1/3+...+1/50) =
1/51+1/52+1/53+ … + 1/100
Hay:
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Viết lại:
(1+1/3+1/5+ … +1/199) – (1/2+1/4+1/6+ … +1/200) = 1/101+1/102+ … +1/200
Tương tự như trên ta được:
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1/2+1/4+1/6+...+1/200) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1+1/2+1/3+...+1/100) =
1/101+1/102+ … +1/200
Hay:
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1 .Chưng minh rằng
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Xét: (1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100) =
(1+1/3+1/5+....+1/99) + (1/2+1/4+1/6+...+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1+1/2+1/3+...+1/50) =
1/51+1/52+1/53+ … + 1/100
Hay:
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Viết lại:
(1+1/3+1/5+ … +1/199) – (1/2+1/4+1/6+ … +1/200) = 1/101+1/102+ … +1/200
Tương tự như trên ta được:
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1/2+1/4+1/6+...+1/200) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1+1/2+1/3+...+1/100) =
1/101+1/102+ … +1/200
Hay:
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
Ta có: 1/3^2=1/3.3<1/2.3
1/4^2=1/4.4<1/3.4
1/5^2=1/5.5<1/4.5
1/6^2=1/6.6<1/5.6
...............................
1/100^2=1/100.100<1/99.100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2.3+1/3.4+1/4.5+1/5.6+....+1/99.100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/99-1/100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2-1/100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<49/100 (1)
Ta có: 1/2=50/100>49/100 (2)
Từ (1) và (2) =>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2(đpcm)