Cho M= 1/1+2+3 + 1/1+2+3+4 + ... +1/1+2+3+...+59
CMR: M<2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)
\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)
\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)
\(M=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4005}\)
\(\frac{M}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{8010}\)
\(\frac{M}{2}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{89x90}\)
\(\frac{M}{2}=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{90-89}{89.90}\)
\(\frac{M}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{89}-\frac{1}{90}=\frac{1}{3}-\frac{1}{90}\)
\(M=\frac{2}{3}-\frac{2}{90}< \frac{2}{3}\)