K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

Answer:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2013+2014\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{1}{x}-\frac{1}{x+2014}\)

\(=\frac{x+2014-x}{x\left(x+2014\right)}\)

\(=\frac{2014}{x\left(x+2014\right)}\)

21 tháng 6 2016

câu này cũng không được tick hả thầy @phynit

10 tháng 6 2017

\(A=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x......x\left(1-\frac{1}{2013}\right)x\left(1-\frac{1}{2014}\right)\)

\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...............x\frac{2012}{2013}x\frac{2013}{2014}\)

\(A=\frac{1}{2014}\)

10 tháng 6 2017

\(\left[1-\frac{1}{2}\right]\left[1-\frac{1}{3}\right]...\left[1-\frac{1}{2014}\right]\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\cdot\frac{2013}{2014}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot5\cdot...\cdot2014}=\frac{1}{2014}\)

21 tháng 12 2018

Đặt biểu thức là A

\(\Rightarrow\)A=\(\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}+\dfrac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\dfrac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{\left(x+2014\right)-\left(x+2013\right)}{\left(x+2013\right)\left(x+2014\right)}\)

\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}+\dfrac{x+2}{\left(x+1\right)\left(x+2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{x+2014}{\left(x+2013\right)\left(x+2014\right)}-\dfrac{x+2013}{\left(x+2013\right)\left(x+2014\right)}\)\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}-\dfrac{1}{x+2}-...-\dfrac{1}{x+2013}+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}.\)\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+2014}\)

\(\Leftrightarrow\dfrac{x+2014-x}{x\left(x+2014\right)}\)

\(\dfrac{2014}{x\left(x+2014\right)}\)