Giải hệ phương trình
\(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Câu a: Thế y=5-2x rồi giải pt bậc2
Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1
Câu c: từ pt 1 suy ra 2x = 2-3y
Nhân 2 vào pt 2 rồi thế vào
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)
$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$
`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$
`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$
Vậy HPT vô nghiệm
a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)
Giải hệ phương trình ta được:
\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)
b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...
Lời giải:
Từ PT(1) $\Rightarrow y=\frac{3x+1}{4}$. Thay vô PT(2) thì:
$\frac{x(3x+1)}{4}=3(x+\frac{3x+1}{4})-9$
$\Leftrightarrow 3x^2-20x+33=0$
$\Leftrightarrow (3x-11)(x-3)=0$
$\Rightarrow x=\frac{11}{3}$ hoặc $x=3$
Nếu $x=\frac{11}{3}$ thì $y=\frac{3x+1}{4}=3$. HPT có nghiệm $(x,y)=(\frac{11}{3}, 3)$
Nếu $x=3$ thì $y=\frac{3x+1}{4}=\frac{5}{2}$. HPT có nghiệm $(x,y)=(3,\frac{5}{2})$
Vì 3x − 4y + 1 = 0 => 3x - 4y = -1(1)
Vì 3(x+y) − 9 = xy => 3x + 3y - 9 = xy
=> 3x - 4y + 7y - 9 = xy
Từ (1), ta có -1 + 7y - 9 = xy <=> 7y - 10 = xy
<=> y(7-x) = 10 <=> y = 10/7-x
Thay vào, ta có 3x − 4.10/7-x + 1 = 0
<=> 3x - 40/7-x + 1 = 0
<=> 3x.(7-x)-40/7-x + 1 = 0
<=> 21x - 3x^2 - 40/7-x + 1 = 0
<=> 21x - 3x^2 - 40/7-x = -1
<=> 21x - 3x^2 - 40 = x-7
<=> 3x^2 - 21x +40 = 7-x
<=> 3x^2 - 20x + 33 = 0
<=> (3x-11)(x-3) = 0
<=> x = 11/3 hoặc x = 3
<=> y = 3 hoặc y = 5/2