cho tam giác vuông ABC, biết S là 6m2, AB = 3m. Tính AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC vuông tại A . áp dụng Pytago
=>\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5cm\)
có \(AC^2=CH.BC\)(hệ thức lượng)
\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)
có tam giác AHC vuông tại H
=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)
=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)
tam giác ABC vuông tại A, lại có góc B = 45 độ
Suy ra: tam giác ABC vuông cân tại A
Suy ra: AC = AB = 3m
Xét ΔABC vuông tại A có \(\widehat{B}=45^0\)(gt)
nên ΔABC vuông cân tại A(Dấu hiệu nhận biết tam giác vuông cân)
Suy ra: AB=AC(Hai cạnh bên)
mà AB=3cm(gt)
nên AC=3cm
Vậy: AC=3cm
a: BC=15cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
a.
Vì ΔABC vuông tại A nên theo định lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 92 + 122
\(\Rightarrow\) BC2 = 225
\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm
b. Xét ΔABC và Δ HBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) Δ HBA (g.g)
\(b,\) Xét tam giác CFH và HEB vuông tại F,E có \(FN=\dfrac{1}{2}CH=\dfrac{8}{9}\left(cm\right);EM=\dfrac{1}{2}BH=\dfrac{9}{10}\left(cm\right)\)
Gọi O là giao điểm AH và EF
Vì AEHF là hcn nên \(OH=OF=OE=OA\)
\(\Rightarrow\widehat{OFH}=\widehat{OHF}\Rightarrow\widehat{OFH}+\widehat{NFH}=\widehat{OHF}+\widehat{NHF}\left(NF=NH\right)\\ \Rightarrow\widehat{NFO}=\widehat{NHO}=90\)
Chứng minh tương tự \(\Rightarrow\widehat{MEF}=\widehat{MHO}=90\)
\(\Rightarrow EFNM\) là hình thang vuông
\(\Rightarrow S_{EFNM}=\dfrac{1}{2}EF\cdot\left(ME+NF\right)=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\left(\dfrac{8}{9}+\dfrac{9}{10}\right)=\dfrac{6}{5}\cdot\dfrac{161}{90}=\dfrac{161}{75}\left(cm^2\right)\)
\(a,BC=\sqrt{AC^2+AB^2}=5\left(cm\right)\)
Áp dụng HTL tam giác \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{AC^2}{BC}=\dfrac{16}{9}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{9}{5}\left(cm\right)\end{matrix}\right.\)
Áp dụng HTL tam giác \(HA^2=HB\cdot HC=\dfrac{16}{5}\cdot\dfrac{9}{5}=\dfrac{144}{25}\Leftrightarrow HA=\dfrac{12}{5}\left(cm\right)\)
Đặt AB = x ; AC = y
Sabc = 1/2 BC.AH => BC = 2Sabc / AH = 2.37,5 : 6 = 12,5
Tam giác ABC vuông tại A , theo Py ta go :
AB^2 + AC^2 = BC^2
<=> AB^2 + AC^2 = 12,5^2
=> x^2 + y^2 = 12,5^2
Tam giác ABC vuông tại A , theo HTL :
AB.AC = BC . AH => x.y = 12.5 x 6 = 75
Đến đây tự làm