Cho đa thức f(x) thỏa man x.f(x-3) = (x+2).f(x). Chứng tỏ rằng đa thức f(x) có ít nhất hai nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
\(x=0\Rightarrow0.f\left(1\right)=3.f\left(0\right)=0\Rightarrow f\left(0\right)=0\)=> x=0 là nghiệm
\(x=-3\Rightarrow-3f\left(-2\right)=0.f\left(-3\right)\Rightarrow f\left(-2\right)=0\)=> x=-2 là nghiệm
Vậy đa thức f(x) có hai nghiệm x={0,-2} => dpcm
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
thay x=0 ta có 0.f(-3)=2f(0)
->2f(0)=0
->f(0)=0
nên 0 là 1 nghiệm của f(x)
thay x=-2 ta có-2f(-5)=0.f(x)
-> -2f(-5)=0
->f(-5)=0
nên -5 là 1 nghiệm của f(x)
vậy f(x) có it nhất 2 nghiệm