tìm x
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 30/61
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{50}{101}\)
suy ra: \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{50}{101}:\frac{1}{2}=\frac{100}{101}\)
\(\frac{1}{x+2}=1-\frac{100}{101}=\frac{1}{101}\)
suy ra: \(x+2=101\)
suy ra: \(101-2=99\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)= \(\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)
=15
TA CÓ : 1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17
=> 2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17
<=> 1 - 1/X+2 = 16/17
X+2/X+2 - 1/X+2 = 16/17
X+2 -1/X+2 = 16/17
=> X+2 -1 =16 VÀ X+2 = 17
=> X = 15
Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{20}{41}\)
\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{40}{41}\)
\(\Leftrightarrow1-\dfrac{2}{x+2}=\dfrac{40}{41}\)
\(\Leftrightarrow\dfrac{2}{x+2}=\dfrac{1}{41}\)
Suy ra: x+2=82
hay x=80
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}.\frac{x+1}{x+2}=\frac{20}{41}\)
\(\frac{x+1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\frac{x+1}{x+2}=\frac{40}{41}\)
\(x+1=40
\)
\(x=40-1\)
\(x=39\)
Đúng thì ****
bạn gom các số vào tách số 1/2 ra ngoài làm thừa số,tử 1 chuyển thành 2 lập hiệu xuất hiện tích đối nhau trừ đi phân phối ra là xong
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 30/61
( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) x 2 = 30/61 x 2
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) = 60/61
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 60/61
1 - 1/x+2 = 60/61
1/x+2 = 1 - 60/61
1/x+2 = 1/61
x + 2 = 61
x = 61 - 2
x = 59