Chứng tỏ rằng:1/2^2+1/3^2+1/4^2+...+1/20^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
\(\frac{180\times123+9\times4567\times2+5310\times6}{\left(2+4+6+...+20+22\right)+48}\)
\(=\frac{18\times123+18\times4567+5310\times6}{132}\)
\(=\frac{116280}{132}=\frac{9690}{11}\)
Ta có:
Xét số a. Ta có a2 > (a - 1)(a + 1)
Thật vậy, (a - 1)(a + 1) = a(a + 1) - (a + 1) = a2 + a - a - 1 = a2 - 1 < a2
Suy ra \(\dfrac{1}{\left(a-1\right)\left(a+1\right)}>\dfrac{1}{a^2}\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(< \dfrac{3}{4}\)
Ko bt có sai chỗ nào ko....
Có:1/2^2+1/3^2+...+1/20^2<1/1*2+1/2*3+...+1/19*20=1-1/20=19/20<1