K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2021

** Bạn lưu ý lần sau viết đề bằng công thức toán (biểu tượng $\sum$ bên trái màn hình) để đề trông rõ ràng hơn $\Rightarrow$ khả năng được giải đáp cao hơn.

Sửa đề: CMR $\frac{a^3}{b}+\frac{b^3}{a}\geq 2$

Lời giải:

Áp dụng BĐT AM-GM: $\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}$

$\geq \frac{(a^2+b^2)^2}{2ab}\geq \frac{2ab(a^2+b^2)}{2ab}=a^2+b^2(1)$

Mà:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$a^2+b^2\geq 2ab$

$\Rightarrow 2(a^2+b^2)+2\geq 2(a+b+ab)=6$

$\Rightarrow a^2+b^2\geq 2(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
10 tháng 3 2021

Cách khác:

Áp dụng BĐT AM-GM:

$\frac{a^3}{b}+b+1\geq 3a$

$\frac{b^3}{a}+a+1\geq 3b$

$\frac{a^3}{b}+\frac{b^3}{a}+ab\geq 3ab$

Cộng theo vế:

$\frac{a^3}{b}+\frac{b^3}{a}+(a+b+ab)+2\geq 3(a+b+ab)$

$\Leftrightarrow 2(\frac{a^3}{b}+\frac{b^3}{a})+3+2\geq 9$

$\Rightarrow \frac{a^3}{b}+\frac{b^3}{a}\geq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=1$

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Câu 1: 

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)

=>\(a^3+b^3+c^3>=3abc\)