: Cho ABC nhọn, có đường cao AH. Trên tia đối của tia HA lấy HE = HA. Chứng minh: tam giác BAE và tam giác CAE là tam giác cân.
Mình đang rất cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ HAI ĐỌC THẲNG AE VÀ BC CẮT NHAU TẠI H VÀ CÓ MỘT GÓC BẰNG 90
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=\widehat{H_3}=\widehat{H_4}=90\)
XÉT \(\Delta BAH\)VÀ\(\Delta BEH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_2}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta BAH=\Delta BEH\left(C-G-C\right)\)
\(\Rightarrow AB=BE\)
VẬY \(\Delta BAE\)CÂN TẠI B(ĐPCM)
XÉT \(\Delta ACH\)VÀ\(\Delta ECH\)CÓ
CH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_3}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta ACH=\Delta ECH\left(C-G-C\right)\)
\(\Rightarrow AC=EC\)
VẬY \(\Delta CAE\)CÂN TẠI C (ĐPCM)
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
Do đó: ΔCHA=ΔCHD
Suy ra: CA=CD
Ta có: AD=HE => AD+DH=HE+DH => AH=DE => AH2=DE2; AD=HE => AD2=HE2.
AH vuông góc BC => Tam giác BHE vuông tại H => BE2=BH2+HE2 (Định lí Pytago) (1)
AH vuông góc BC, DF//BC => DF vuông góc với AH => Tam giác EDF vuông tại D => EF2=DE2+DF2 (Pytago) (2)
Từ (1) và (2) => BE2+EF2=BH2+HE2+DE2+DF2 (3)
Thay AH2=DE2; AD2=HE2 (cmt) vào (3), ta được: BE2+EF2=BH2+AD2+AH2+DF2 => BE2+EF2=(BH2+AH2)+(AD2+DF2)
=> BE2+EF2=AB2+AF2 (Áp dụng định lí Pytago với 2 cặp cạnh)
Xét tam giác ABF có: ^A=900 => AB2+AF2=BF2, thay vào biểu thức trên ta có: BE2+EF2=BF2.
=> Tam giác BEF có: BE2+EF2=BF2 => Tam giác BEF vuông tại E (Định lí Pytago đảo) (đpcm).
Xét tứ giác ABIC có
M là trung điểm của AI
M là trung điểm của BC
Do đó: ABIC là hình bình hành
Suy ra: CI=AB(1)
Xét ΔABE có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABE cân tại B
=>BA=BE(2)
Từ (1) và (2) suy ra BE=CI
Xét ΔBAE có
BH là đường cao
BH là đường trung tuyến
Do đó;ΔBAE cân tại B
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
Ta có BH là đường trung trực của AE nên AB=BE⇒ΔABE cân tại B
Ta có CH là đường trung trực của AE nên AC=CE⇒ΔACE cân tại C