giai hpt x+y+z=6 và xy +yz+zx = 12 và 2/x +2/y + 2/z =3
giải hpt
x+yz = 2 và y+zx =2 và z+ xy=2
giải bài nào cũng dc giúp với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
Lời giải:
\(\Rightarrow (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=36\)
Kết hợp với \(x^2+y^2+z^2=14\Rightarrow xy+yz+xz=11\)
Có \(\left\{\begin{matrix} xy+yz-xz=7\\ xy+yz+xz=11\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xz=2\\ xy+yz=9\rightarrow y(6-x)=9\rightarrow y=3\rightarrow x+z=3\end{matrix}\right.\)
Từ \(\left\{\begin{matrix} xz=2\\ x+z=3\end{matrix}\right.\Rightarrow \left[ \begin{array}{ll} (x,z)=(2,1) \\ \\ (x,z)=(1,2) \end{array} \right.\)
Vậy HPT có nghiệm \((x,y,z)=(2,3,1),(1,3,2)\)
sao lại có cả trên 2 vậy
nhân vế trái với 2 là tạo ra cả 3 hàng đẳng thức rồi mà chắc bạn nhầm đâu đó rồi
Lời giải:
Ta có:
$xy+yz+xz=(x+y+z)^2-(x^2+y^2+z^2+xy+yz+xz)=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow 3(xy+yz+xz)=1=(x+y+z)^2$
$\Leftrightarrow (x+y+z)^2-3(xy+yz+xz)=0$
$\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0$
$\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Vì $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$.
Do đó để tổng của chúng bằng $0$ thì $x-y=y-z=z-x=0$
$\Leftrightarrow x=y=z$
Khi đó:
$A=\frac{x}{x+x}+\frac{x}{x+x}+\frac{x}{x+x}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$
1. (x;y;z) = (2;2;2) . Đó là hpt đối xứng
2.(x;y;z) = (1;1;1) . Đây cũng là hpt đối xứng