CMR:1/50+1/51+1/52+...+1/99<5/6
giải đc đúng sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{50\times51}+\frac{1}{51\times52}+...+\frac{1}{99\times100}\)
\(=\frac{51-50}{50\times51}+\frac{52-51}{51\times52}+...+\frac{100-99}{99\times100}\)
\(=\frac{1}{50}-\frac{1}{51}+\frac{1}{51}-\frac{1}{52}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{50}-\frac{1}{100}=\frac{1}{100}\)
Ta có \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(\Rightarrow\text{Đ}PCM\)
B=1/50+1/51+1/52+...+1/99
Ta có: 1/50=1/50
1/51<1/50
1/52<1/50
..............
1/99<1/50
1/50+1/51+1/52+...+1/99<1/50+1/50+1/50+...+1/50(50 phân số 1/50)
B<1
Ta ó: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};....;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(50so\right)=\frac{50}{100}=\frac{1}{2}\)
Vậy...
Ta có :
Tất cả các số hạng của tổng đều lớn hơn \(\frac{1}{100}\), mà tổng có 50 số hạng
=> S > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)( có 50 số 1/100 )
=> S > \(\frac{50}{100}\)= \(\frac{1}{2}\)
Vậy S > 1/2
1/50+1/51+1/52+...+1/99<5/6<1/50.25+1/75.25=1/2+1/3=5/6(đpcm)
ghjbhjgh