Tìm số nguyên tố abcd sao cho ab,ac đều là số nguyên tố và b2=cd+b-c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link này nè bạn:
https://olm.vn/hoi dap/detail/54265377038.html
Chúc bạn học tốt
~_Forever_~
Để abcd nguyên tố \(\Leftrightarrow\)abcd lẻ \(\Leftrightarrow\)d lẻ
Mà ta lại có : b^2 =cd + b - c
b^2 = 9c+d+b
=> b(b-1) = 9c + d \(\le72\)
=> \(7\le c< 8\)=> c = 7 => d =9 => b = 9 => a = 1 hoặc 4
Vậy số cần tìm là : 1979 hoặc 4979
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Vì abcd, ab, ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5.Ta có:
b^2=cd+b-c
<=> b^2-1=10c+d-c
<=> b.(b-1)=9c+d lớn hơn hoặc bằng 10
=> b lớn hơn hoặc bằng 4
=> b=7 hoặc b=9
- Với b=7 ta có: 9c+d=42 => d chia hết cho 3
=> d=3 hoặc d=9
+, Nếu d=3 thì c=39/9 ko thuộc N (loại)
+, Nếu d=9 thì c=33/9 ko thuộc N (loại)
- Với b=9 thì 9c+d=72 => d=9, c=7
a9 và a7 là số nguyên tố thì a=1
Vậy abcd=1979
Mình ko hiểu cho lắm. Tại sao b=7 hoặc b =9