Bài 7: Cho tam giác ABC, P là trung điểm của AB. Đường thẳng qua P và song song với BC cắt AC ở Q,
đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng:
a) AP = QF
b) ∆ APQ = ∆ QFC
c) Q là trung điểm của AC
d) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP. Chứng minh CI // AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Δ DBF và Δ FDE, ta có:
∠(BDF) =∠(DFE) (so le trong vì EF // AB)
DF cạnh chung
∠(DFB) =∠(FDE) (so le trong vì DE // BC)
Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: AD = EF
mặt dù đây ko phải câu hỏi mình chọn nhưng nó rất là hay và dễ hiểu
Mình cũng xin chúc các bạn năm mới vui vẻ cùng Hoc24 nha!
Ta có: DE // BC (gt)
⇒∠(D1 ) =∠B (đồng vị) (1)
Do EF // AB (gt)
⇒∠(F1 ) =∠B (đồng vị) (2)
Từ (1) và (2) suy ra: ∠(D1 ) =∠F1
Xét Δ ADE và Δ EFC, ta có:
∠A =∠(E1 ) (hai góc đồng vị, EF// AB)
AD = EF ( chứng minh a)
∠(D1 ) =∠(F1 ) (chứng minh trên)
Suy ra : Δ ADE = Δ EFC(g.c.g)
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Xét 2 tam giác AED và tam giác FED có ED chung
Vì D là chung điểm =>DA=DB
=>EF//AB=>EF//AD
Nối Fvới D=>AE//DF
Vậy hai tam giác ADE = EDF(c.c.c)
=>AD=EF
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
a: Xét tứ giác APFQ có
FQ//AP
AQ//PF
Do đó: APFQ là hình bình hành
Suy ra: AP=QF
b: Xét ΔAPQ và ΔQFC có
\(\widehat{A}=\widehat{FQC}\)
AP=QF
\(\widehat{APQ}=\widehat{QFC}\left(=\widehat{B}\right)\)
Do đó: ΔAPQ=ΔQFC
c: Xét ΔABC có
P là trung điểm của AB
PQ//BC
Do đó: Q là trung điểm của AC
d: Xét ΔABC có
P là trung điểm của AB
Q là trung điểm của AC
Do đó: PQ là đường trung bình
=>PQ//BC và PQ=BC/2
hay PI//BC và PI=BC
=>BPIC là hình bình hành
Suy ra: IC//PB
hay IC//AB
bn có thể trl đc k ???