Cho 12 số nguyên tó khác nhau.CMR : Luôn tìm được 2 số có hiệu là 1 số chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.
Ta chia 4 số dư trên thành 2 nhóm:
+ Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.
+ Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.
Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.
=> Tổng của chúng chia hết cho 12.
Trong 3 số thì ít nhất phải có 2 số có cùng số dư.
=> Hiệu của chúng chia hết cho 12.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12
nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11
) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)