Tìm các số nguyên n thỏa mãn: (n^2 - 3). (n^2 - 15). (n^2 - 27). ( n^2 - 40) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2 = x \(\left(x\in N\right)\)
Ta có: (x - 4)(x - 14) (x- 24) (x - 34 ) < 0
Lập bảng xét dấu (Hoặc dùng phương pháp khoảng) ta sẽ thu được kết quả:
4 < x < 14 hoặc 24 < x < 34
Dễ thấy chọn được 2 số chính phương trong các khoảng trên: x = 9; x = 25 => n = +/- 3; n = +/- 5
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
\(\Leftrightarrow1< =n^2< =15\)
mà n là số nguyên
nên \(n\in\left\{1;-1;2;-2;3;-3\right\}\)
1
a)\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}\)
b)\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n=1;-1\end{cases}}\)
a) (n + 1)(n + 3) = 0
\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}}\)
b) (|n| + 2)(n2 - 1) = 0
\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left|n\right|=-2\\n^2=1\end{cases}}}\)
Vì \(\left|n\right|\ge0\)
Mà \(-2< 0\)
=> Không có giá trị thõa mãn
Vậy n2 = 1 = 12 = (-1)2
=> n = {1 ; -1}
Bài 2
25 = 5.5 = 52
36 = 6.6 = 62
49 = 7.7 = 72
(n+1)(n+3)=0
<=>n+1=0 hoặc n+3=0
<=>n=-1 hoặc n=-3
vậy n E {-3;-1]
(|n|+2)(n^2-1)=0<=>|n|+2=0 hoặc n^2-1=0
<=>|n|=-2 (vô lí,loại) hoặc n^2=1=>n=1
vậy n E {1}