Vẽ Cuộc sống quanh em(không vẽ mạng ạ, cần gấp ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


< không thấy chữ thì cop link này >
https://hoc24.vn/images/discuss/1646822541_6228848d8d097.jpg

tham khảo
thề ko chép mạng chỉ copi trên gg thôi :) ( bạn có thể dượng theo dàn ý bài này làm )
1. Mở Bài- Tình bạn là tình cảm đẹp của con người.- Con người không thể sống mà thiếu tình bạn. 2. Thân Bàia. Tình bạn là gì?Là sự gắn kết của những người có cùng hoàn cảnh, sở thích, lý tưởng, chia sẻ vui buồn, giúp đỡ lẫn nhau... b. Vì sao con người không thể sống thiếu tình bạn?· Tình bạn đem lại niềm vui.· Tình bạn là một trong những nguồn sức mạnh tinh thần.· Tình bạn chân thành là điều vô giá của con người.· Nếu thiếu tính bạn, con người thật lẻ loi, đơn đôc, khó có niềm vui trong cuộc sống. c. Làm thế nào để vun đắp tình bạn?· Trân trọng và luôn trung thực trong tình bạn.· Thẳng thắn giúp bạn nhận ra điều chưa đúng.· Cổ vũ khi bạn gặp khó khăn.· Sẵn lòng giúp đỡ bạn trong khả năng của mình. d. Phê phán:· Có những người chưa biết trân trọng tình bạn.· Ích kỷ và gian dối trong tình bạn là điều rất đáng tiếc. 3. Kết Bài· Tình bạn từ bao đời vẫn là một tình cảm cao đẹp của con người.· Cuộc sống không thể thiếu tình bạn, hãy luôn xây dựng và giữ gìn tình cảm này.

Bài 1
a) Do ∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB và AB = AC
Do BD là tia phân giác của ∠ABC (gt)
⇒ ∠ABD = ∠ABC : 2
Do CE là tia phân giác của ∠ACB (gt)
⇒ ∠ACE = ∠ACB : 2
Mà ∠ABC = ∠ACB (cmt)
⇒ ∠ABD = ∠ACE
Xét ∆ABD và ∆ACE có:
∠ABD = ∠ACE (cmt)
AB = AC (cmt)
∠A chung
⇒ ∆ABD = ∆ACE (g-c-g)
⇒ AD = AE (hai cạnh tương ứng)
⇒ ∆ADE cân tại A
⇒ ∠AED = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)
Do ∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) ⇒ ∠AED = ∠ABC
Mà ∠AED và ∠ABC là hai góc đồng vị
⇒ ED // BC
⇒ BEDC là hình thang
Lại có ∠ABC = ∠ACB (cmt)
⇒ ∠EBC = ∠DCB
⇒ BEDC là hình thang cân
b) Do ∠C = 50⁰ (gt)
⇒ ∠DCB = ∠EBC = 50⁰
⇒ ∠AED = ∠EBC = 50⁰
Mà ∠AED + ∠BED = 180⁰ (kề bù)
⇒ ∠BED = 180⁰ - ∠AED = 180⁰ - 50⁰ = 130⁰
⇒ ∠CDE = ∠BED = 130⁰
Bài 4:
a: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC và \(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BDEC là hình thang cân
b: BD=DE
=>ΔDEB cân tại D
=>\(\hat{DEB}=\hat{DBE}\)
mà \(\hat{DEB}=\hat{EBC}\) (hai góc so le trong, DE//BC)
nên \(\hat{DBE}=\hat{CBE}\)
=>\(\hat{ABE}=\hat{CBE}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC của ΔABC
Ta có: ED=EC
=>ΔEDC cân tại E
=>\(\hat{EDC}=\hat{ECD}\)
mà \(\hat{EDC}=\hat{DCB}\) (hai góc so le trong, ED//BC)
nên \(\hat{ECD}=\hat{BCD}\)
=>\(\hat{ACD}=\hat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác kẻ từ C xuống AB của ΔABC
Bài 3:
a: ΔCAD vuông tại C
=>\(\hat{CAD}+\hat{CDA}=90^0\)
=>\(\hat{CAD}=90^0-60^0=30^0\)
AC là phân giác của góc BAD
=>\(\hat{BAD}=2\cdot\hat{CAD}=2\cdot30^0=60^0\)
Xét hình thang ADCB có \(\hat{BAD}=\hat{CDA}\left(=60^0\right)\)
nên ADCB là hình thang cân
b: Qua B, kẻ BK⊥AD tại K
Qua C, kẻ CH⊥AD tại H
=>BK//CH
Xét ΔBKA vuông tại K và ΔCHD vuông tại H có
BA=CD
\(\hat{BAK}=\hat{CDH}\)
Do đó: ΔBKA=ΔCHD
=>BK=CH và AK=HD
Gọi M là trung điểm của CD
Trên tia đối của tia MH, lấy E sao cho MH=ME
=>M là trung điểm của HE
Xét tứ giác CHDE có
M là trung điểm chung của CD và HE
=>CHDE là hình bình hành
Hình bình hành CHDE có \(\hat{CHD}=90^0\)
nên CHDE là hình chữ nhật
=>CD=HE
mà \(CM=MD=\frac{CD}{2};MH=ME=\frac{HE}{2}\)
nên \(CM=MD=MH=ME\)
Xét ΔDMH có MH=MD và \(\hat{MDH}=60^0\)
nên ΔMDH đều
=>DH=MD=CD/2
Ta có: BC//AD
=>\(\hat{BCA}=\hat{CAD}\) (hai góc so le trong)
mà \(\hat{CAD}=\hat{BAC}\)
nên \(\hat{BCA}=\hat{BAC}\)
=>BA=BC
mà BA=CD
nên BA=BC=CD
AK=HD
mà \(HD=\frac{CD}{2}\)
nên \(AK=HD=\frac{CD}{2}\)
Xét tứ giác BCHK có
BC//HK
BK//CH
Do đó: BCHK là hình bình hành
=>BC=HK
=>\(HK=CD\)
AD=AK+KH+HD
\(=\frac{CD}{2}+CD+\frac{CD}{2}=2CD\)
Chu vi hình thang ABCD là:
AB+BC+CD+DA=20
=>CD+CD+CD+2CD=20
=>5CD=20
=>CD=4(cm)
=>\(AD=2\cdot4=8\left(\operatorname{cm}\right)\)
Bài 2:
a: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
=>\(\hat{ABD}=\hat{BAC}\)
=>\(\hat{OAB}=\hat{OBA}\)
=>OA=OB
ta có: OA+OC=AC
OB+OD=BD
mà OA=OB và AC=BD
nên OC=OD
b: Xét ΔEDC có \(\hat{EDC}=\hat{ECD}\)
nên ΔEDC cân tại E
=>ED=EC
Ta có: EA+AD=ED
EB+BC=EC
mà ED=EC và AD=BC
nên EA=EB
Ta có: EA=EB
=>E nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1),(2) suy ra EO là đường trung trực của AB
Ta có: EC=ED
=>E nằm trên đường trung trực của CD(3)
ta có: OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3),(4) suy ra EO là đường trung trực của CD

Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
hay MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành

Sống: cây cối, con chó, con mèo, giun ....
Không sống: cái bàn, cái tường ...
Vật sống: cây bàng, cây phượng, cây đu đủ, con chó, con mèo, .....
Vật không sống: cái bàng, cái máy tính, cái ghế, ....
ko vẽ mạng thì tự vẽ thôi
bài này mik cũng vừa làm xog
Tên mik là Long nhé