K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

do 17 khong chia het cho 3 nen 17n khong chia het cho 3.xet 3 so tu nhien lien tiep:17n-1,17n,17n+1 luon co 1 so chia het cho 3 ma 17n khong chia het cho 3 nen17n+1 chia het cho 3 hoac 17n+2 chia het cho 3 =>(17n+1)(17n+2) chia het cho 3

a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(xN)x,x+1,x+2(x∈N)

- Nếu x=3kx=3k ( thỏa mãn ). Nếu x=3k+1x=3k+1 thì x+2=3k+1+2=(3k+3)3x+2=3k+1+2=(3k+3)⋮3

- Nếu x=3k+2x=3k+2 thì x+1=3k+1+2=(3k+3)3x+1=3k+1+2=(3k+3)⋮3

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy 17n,17n+1,17n+217n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải 3⋮3

Do vậy: A=(17n

6 tháng 2 2021

Tự làm hay cop bạn ?

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

 17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 
* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 
------------------------------ 
Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 
17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

2 tháng 11 2016

17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 

* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 

=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 

------------------------------ 

Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 

17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

2 tháng 11 2016

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

3 tháng 7 2015

a) Ta sẽ dùng cách cm gián tiếp:

     Cho A = 14^13 + 14^12 + .... +14 + 1

=> 14A    = 14^14 + 14^13 +...+14^2 +14

=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)

13A = 14^14 - 1

Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)

b) Tương tự như vậy: 

 Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1

=> 2015B    = 2015^2016 + 2015^2015 +...+2015^2 +2015

=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)

2014B = 2015^2016 - 1

Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)

5 tháng 7 2015

Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :

a, 14^14đồng dư 1^14đồng dư 1(mod13) 

Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13)   (đpcm)

b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1 

...........rồi bạn suy ra nhé

 

  

8 tháng 12 2017

\(A=3^1+3^2+...+3^{30}\)

=> A=3(1+3) +...+ 329(1+3)

        =3.4+ ... + 329.4 \(⋮\)4

Chia het 13 ban lam tuong tu nhe

1 tháng 10 2018

Để  111...1  + 2n chia hết cho 3 

thì \(\hept{\begin{cases}111...1\text{ }⋮\text{ }3\\2n\text{ }⋮\text{ }3\end{cases}}\)

Ta có 2n chia hết cho 3 

             mà 2 ko chia hết cho 3 

=> n chia hết cho 3 

Để 111...1 chia hết cho 3 <=> có n chữ số 1 

Vì 1 số có 1 dãy số toàn số 1 có hơn 3 chữ số thì chia hết cho 3 nên số còn lại cũng phải chia hết cho 3. 

Suy ra n = 1

6 tháng 10 2016

ỪM KHÓ QUÁ KO LÀM ĐƯỢC