Tìm m dể đa thức g(x)=(m^2-4)x^4-(m+2)x^3+3x^3-5x-4 có bậc bằng 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
Thu gọn và sắp xếp:
P(x) = x² + 5x^4 - 3x³ + x² + 4x^4 + 3x³ - x + 5
= (5x^4 + 4x^4) + (- 3x³+ 3x³) + (x² + x²) - x + 5
= 9x^4 + 2x² - x +5
Q(x)= x - 5x³ - x² - x^4 + 4x³ - x² - 3x - 1
= -x^4 + (- 5x³ + 4x³) + (- x² - x²) + (x - 3x) - 1
= -x^4 - x³ -2x² - 2x - 1
mik mới chỉ làm đc vz thui ak
a, Ta có : \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(=2x^2+9x^4-x+5\)
\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)
\(=4x-x^3-2x^2-1-x^4\)
Sắp xếp :
\(P\left(x\right)=9x^4+2x^2-x+5\)
\(Q\left(x\right)=-x^4-x^3-2x^2+4x-1\)
b, \(M\left(x\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1\)
\(=8x^4+3x+4\)Bậc : 4
c, \(N\left(x\right)=18x^4+4x^2-2x+10+x^4+x^3+2x^2-4x+1\)
\(=19x^4+6x^2-6x+11\)
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
Bài 4:
\(P\left(x\right)=\left(-5x^3+2x^3+3x^3\right)+x^4+3x^2+\left(x-x\right)-4+7\)
\(=x^4+3x^2+3\)
\(Q\left(x\right)=-x^4+\left(5x^3+5x^3\right)+\left(-x^2-x^2\right)+\left(3x+x\right)-1\)
\(=-x^4+10x^3-2x^2+4x-1\)
a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4