- Giải pt \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=\left(1.2+2.3+...+2006.2007\right)\)
2. tìm GTNN của A=x2_ 2xy+6y2_ 12x+2y _ 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không tính nhé tth nghĩ nát óc mới ra :3
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)
\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)
Đến đây rồi tự làm tiếp đi nhé
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007
= 2006/2007
thay vào phương trình ta có phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
còn lại bạn tính nhé
Đặt \(NCTK=VT\)
\(\Rightarrow2NCTK=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...\)
\(+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(\Rightarrow2NCTK=\frac{1}{2}-\)\(\frac{1}{2006.2007}\)
\(\Rightarrow NCTK=\frac{1}{4}-\frac{1}{2.2006.2007}\)
Đặt \(KN=1.2+2.3+...+2006.2007\)
\(3KN=1.2.3+2.3.\left(4-1\right)+...+2006.2007\left(2008-2005\right)\)
\(=2006.2007.2008\)
\(KN=\frac{2006.2007.2008}{3}\)
...
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2005.2006.2007}\)
\(B=1.2+2.3+3.4+....+2006.2007\)
Ta có : \(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)\)
\(B=1.2+2.3+3.4+....+2006.2007\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.5.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)}{3}\)
\(=\frac{1.2.3+2.3.4-1.2.3+3.4.5-...+2006.2007.2008-2005.2006.2007}{3}\)
\(=\frac{2006.2007.2008}{3}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)x=\frac{2006.2007.2008}{3}\)
\(\Rightarrow x=\frac{2006.2007.2008}{3}:\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\right]\)(tự tính)
Đặt: \(\left\{{}\begin{matrix}l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\\l_2=1.2+2.3+3.4+...+2006.2007\end{matrix}\right.\Leftrightarrow l_1.x=l_2\)
Ta có:
\(l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2005.2006}-\dfrac{1}{2006.2007}\right)\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\)
\(l_2=1.2+2.3+3.4+...+2006.2007\)
\(3l_2=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)\)
\(3l_2=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2006.2007.2008-2005.2006.2007\)
\(3l_2=2006.2007.2008\Leftrightarrow l_2=\dfrac{2006.2007.2008}{3}\)
Hay: \(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\right].x=\dfrac{2006.2007.2008}{3}\)
Tới đây thì bấm máy tính là ra :V
Nhã Doanh, ngonhuminh, nguyen thi vang, Hoàng Anh Thư, Mashiro Shiina, Phạm Nguyễn Tất Đạt, F.C, Trần Thị Hồng Ngát, Mến Vũ, kuroba kaito, @Phùng Khánh Linh, Nguyễn Huy Tú, Lightning Farron, Hung nguyen, ...
Ta có:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)
\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)
B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)
Ta có: A.x=B => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)
=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007 = 2006/2007
thay vào ta được phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)x=\frac{1}{3}\left(2014.2015.2016-2013.2014.2015........+2.3.4-1.2.3+1.2.3-0.1.2\right)\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)
\(x=\frac{1}{3.2029104}.2014^2.2015^2.2016=\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)