K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

24 tháng 8 2017

Đáp án B

\(\overrightarrow{AB}=\left(-9;5\right)\)

\(\overrightarrow{AC}=\left(-\dfrac{9}{4};\dfrac{1}{2}\right)\)

Vì \(\overrightarrow{AB}=k\cdot\overrightarrow{AC}\) nên A,B,C thẳng hàng

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow {OA}  = \left( {2;1} \right)\) ( do A(2; 1)) và \(\overrightarrow {OB}  = \left( {3;3} \right)\) (do B (3; 3)).

Hai vectơ này không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)).

Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

b) Các điểm O, A, B không thẳng hàng nên OABM là một hình hành khi và chỉ khi \(\overrightarrow {OA}  = \overrightarrow {MB} \).

Do \(\overrightarrow {OA}  = \left( {2;1} \right),\quad \overrightarrow {MB}  = \left( {3 - x;3 - y} \right)\) nên

\(\overrightarrow {OA}  = \overrightarrow {MB}  \Leftrightarrow \left\{ \begin{array}{l}2 = 3 - x\\1 = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

Vậy điểm cần tìm là M (1; 2).

A(m-1;-1); B(2;2-2m); C(m+3;3)

\(\overrightarrow{AB}=\left(2-m+1;2-2m+1\right)\)

=>\(\overrightarrow{AB}=\left(3-m;3-2m\right)\)

\(\overrightarrow{AC}=\left(m+3-m+1;3+1\right)\)

=>\(\overrightarrow{AC}=\left(4;4\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\)

=>3-m=3-2m

=>m=0

NV
4 tháng 1 2024

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3-m;3-2m\right)\\\overrightarrow{AC}=\left(4;4\right)\end{matrix}\right.\)

3 điểm A;B;C thẳng hàng khi và chỉ khi \(\overrightarrow{AB}=k\overrightarrow{AC}\) với \(k\ne0\)

Hay \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\Rightarrow m=0\)

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$

$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$

$\Leftrightarrow (5-3a, -1-3b)=(0,0)$

$\Rightarrow 5-3a=0; -1-3b=0$

$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$

b.

Để $A,B,D$ thẳng hàng thì:

$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$

$\Leftrightarrow (1,-7)=k(-2, 3m-1)$

$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$

$\Rightarrow m=5$

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

NV
9 tháng 3 2023

Có vô số điểm N để A,B,N thẳng hàng, cho nên để tìm ra 1 điểm N cụ thể thì cần thêm điều kiện nữa (ví dụ N thuộc Ox, Oy hoặc đường thẳng nào đó)

a: Ảnh của A là:

x=1+3=4 và y=2+1=3

b: (d') là ảnh của (d) qua phép tịnh tiến vecto a=(3;-2)

=>(d'): x+y+c=0

Lấy B(1;4) thuộc (d)

=>B'(4;2)

Thay x=4 và y=2 vào (d'), ta được:

c+4+2=0

=>c=-6

d: Theo đề,ta có:

2+x=-1 và 4+y=3

=>x=-3 và y=-1

=>vecto u=(-3;-1)