Tìm X
e) – 40 – (– 3 – 33) + (40 – x) = – (– 47) f) x(3x – 9). (121 – x2) = 0
g) – 62 – (38 + x) + 2x = – 100 h) (x + 1)2.(x2 + 1) = 0
i) (x – 12) – (2x + 31) = 6 k) 17/ (x + 3)3 : 3 – 1 = – 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i: =>x-12-2x-31=6
=>-x-43=6
=>x+43=-6
hay x=-49
h: =>(x+1)=0
=>x=-1
f: =>x(x-3)(x+11)(x-11)=0
hay \(x\in\left\{0;3;-11;11\right\}\)
Bài 1: Tìm x
a) 2x - 15 = -27
b) 2 (x + 1) – 3 = 7
c) 14 – (40 – x) = -27
d) 96 – 2(4 – 5x) = -12
e) – 40 – (– 3 – 33) + (40 – x) = – (– 47)
f) x(3x – 9). (121 – x2) = 0
g) – 62 – (38 + x) + 2x = – 100
h) (x + 1)2.(x2 + 1) = 0
i) (x – 12) – (2x + 31) = 6
k) 17/ (x + 3)3 : 3 – 1 = – 10
Bài 1: a) 2x - 15 = 27 => 2x = 27 + 15 = 42 => x = 42 : 2 = 21. b) 2(x + 1) - 3 = 7 => 2(x + 1) = 7 + 3 = 10 => x + 1 = 10 : 2 = 5 => x = 5 - 1 = 4. c) 14 - (40 - x) = -27 => 40 - x = 14 - (-27) = 41 => x = 40 - 41 = -1. d) 96 - 2(4 - 5x) = -12 => 2(4 - 5x) = 96 - (-12) = 108 => 4 - 5x = 108 : 2 = 54 => 5x = 4 - 54 = -50 => x = (-50) : 5 = -10.
Bài 1:
a) Ta có: \(-5x+32=\left(-2\right)^3\)
\(\Leftrightarrow-5x+32=-8\)
\(\Leftrightarrow-5x=-40\)
hay x=8
Vậy: x=8
b) Ta có: \(-2x+36=6\)
\(\Leftrightarrow-2x=6-36=-30\)
hay x=15
Vậy: x=15
e) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
b,-2x+36=6
tương đương -2x=-30
tương đương x=15
a, -5x+32=(-2)^3
tương đương -5x+32=8
tương đương -5x=-24
tương đương x=24/5
\(e,\Leftrightarrow x^2-10x+21-x^2=1\\ \Leftrightarrow-10x=-20\Leftrightarrow x=2\\ f,\Leftrightarrow x^2+4x+4-x^2+3x-2=0\\ \Leftrightarrow7x=-2\Leftrightarrow x=-\dfrac{2}{7}\\ g,=x^2-2x+1-x^2+4=-2x+5\\ h,\Leftrightarrow10x^2+9x-10x^2-13x+3=8\\ \Leftrightarrow-4x=5\Leftrightarrow x=-\dfrac{5}{4}\)
e) \(\left(x-3\right)\left(x-7\right)-x^2=1\\ \Rightarrow x^2-10x+21-x^2=1\\ \Rightarrow-10x=-20\\ \Rightarrow x=2\)
f) \(\left(x+2\right)^2-\left(x-2\right)\left(x-1\right)=0\\ \Rightarrow x^2+4x+4-x^2+3x-2=0\\ \Rightarrow7x=-2\\ \Rightarrow x=-\dfrac{2}{7}\)
g) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow x^2-2x+1-x^2+4=0\\ \Rightarrow-2x=-5\\ \Rightarrow x=\dfrac{5}{2}\)
h) \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\\ \Rightarrow10x^2+9x-10x^2-13x+3=8\\ \Rightarrow-4x=5\\ \Rightarrow x=-\dfrac{5}{4}\)
f: Ta có: \(x\left(2x-9\right)-4x+18=0\)
\(\Leftrightarrow\left(2x-9\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=2\end{matrix}\right.\)
g: Ta có: \(4x\left(x-1000\right)-x+1000=0\)
\(\Leftrightarrow\left(x-1000\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1000\\x=\dfrac{1}{4}\end{matrix}\right.\)
f. x(2x - 9) - 4x + 18 = 0
<=> x(2x - 9) - 2(2x - 9) = 0
<=> (x - 2)(2x - 9) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\2x-9=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=\dfrac{9}{2}\end{matrix}\right.\)
g. 4x(x - 1000) - x + 1000 = 0
<=> 4x(x - 1000) - (x - 1000) = 0
<=> (4x - 1)(x - 1000) = 0
<=> \(\left[{}\begin{matrix}4x-1=0\\x-1000=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=1000\end{matrix}\right.\)
h. 2x(x - 4) - 6x2(-x + 4) = 0
<=> 2x(x - 4) + 6x2(x - 4) = 0
<=> (2x + 6x2)(x - 4) = 0
<=> 2x(1 + 3x)(x - 4) = 0
<=> \(\left[{}\begin{matrix}2x=0\\1+3x=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\\x=4\end{matrix}\right.\)
i. 2x(x - 3) + x2 - 9 = 0
<=> 2x(x - 3) + (x - 3)(x + 3) = 0
<=> (2x + x + 3)(x - 3) = 0
<=> (3x + 3)(x + 3) = 0
<=> \(\left[{}\begin{matrix}3x+3=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
j. 9x - 6x2 + x3 = 0
<=> x(9 - 6x + x2) = 0
<=> x(3 - x)2 = 0
<=> \(\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
e: =>-40+3+33+40-x=47
=>36-x=47
=>x=-11
f: =>x(x-3)(11-x)(11+x)=0
hay \(x\in\left\{0;3;11;-11\right\}\)
g: =>-62-38-x+2x=-100
=>x-100=-100
hay x=0