K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 3 2021

\(n^2+5n+15⋮49\)

\(\Rightarrow n^2+5n+15⋮7\)

\(\Leftrightarrow n^2-2n+1=\left(n-1\right)^2⋮7\)

\(\Leftrightarrow n-1⋮7\)

\(\Leftrightarrow n=7k+1,k\inℕ\).

\(n^2+5n+15=\left(7k+1\right)^2+5\left(7k+1\right)+15\)

\(=49k^2+49k+6⋮̸49\).

Ta có đpcm. 

10 tháng 11 2015

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

21 tháng 2 2016

n2+5n+5 chia hết cho 25

=>n2+5n+5 chia hết cho 5

Giả sử n2+5n+5 chia hết cho 5

Vì 5n+5=5(n+1) chia hết cho 5

=>n2 chia hết cho 5,mà 5 là số nguyên tố => n chia hết cho 5

do đó n có dạng:n=5k (k E N)

ta có:n2+5n+5=(5k)2+5.5k+5=52.k2+25k+5=25k2+25k+5

Vì 25k2+25k=25(k2+k) chia hết cho 25,mà 5 ko chia hết cho 25=>n2+5n+5 ko chia hết cho 25

=>Trái giả thiết

Vậy ....

21 tháng 2 2016

Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5) 
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5 
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25 

28 tháng 12 2017

chứng minh nó không chia hết cho 49 là được. dễ mà

28 tháng 12 2017

Đặt A=n2+11n+39

Giả sử n2+11n+39 chia hết cho 49 thì A chia hết cho 49 => A cũng chia hết cho 7

Ta có A=n2+11n+39=n2+9n+2n+18+21 =  n(n+9)+2(n+9)+21 =(n+9)(n+2)+21

Nhận thấy( n+9)-(n+2)=7 

=>Đồng thời (n+9) và (n+2) chia hết cho 7 => (n+9)(n+2) chia hết cho 49

Ta cũng có A chia hết cho 49 mà 21 ko chia hết cho 49 ( vô lí )

Vậy n2+11n+39 ko chia hết cho 49

2 tháng 4 2020

G/s: A = \(n^2+7n+7⋮49\)

=> \(n^2⋮49\)

=> \(n⋮7\)

Đặt : n = 7 k 

Khi đó: \(A=49k^2+49k+7⋮49\)

=> \(7⋮49\) vô lí 

=> Điều g/s là sai 

Vậy A không thể chia hết cho 49.

3 tháng 4 2020

cảm ơn bn nhìu

19 tháng 10 2014

a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2

Vậy (5n+7)(4n+6) chia hết cho 2

Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.

mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho 

vậy (5n+7)(4n+6) chia het cho (đpcm)

b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)

                6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)

từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le

vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n

                      câu a bạn nên làm theo cách 2

15 tháng 10 2016

đúng rồi