Làm giúp e câu 3 với ạ🥺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ủa cái bài TA này em còn làm đc luôn á ! Anh có vở ghi ở lớp thì xem lại chỗ nào ko hiểu thì hỏi ba má
2) \(\dfrac{\left(1+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2}{1-2\sqrt{a}}:\dfrac{\sqrt{a}}{3}\left(a>0,a\ne\dfrac{1}{4}\right)\)
\(=\dfrac{\left(1+\sqrt{a}-2+\sqrt{a}\right)\left(1+\sqrt{a}+2-\sqrt{a}\right)}{1-2\sqrt{a}}.\dfrac{3}{\sqrt{a}}\)
\(=\dfrac{3.\left(2\sqrt{a}-1\right)}{1-2\sqrt{a}}.\dfrac{3}{\sqrt{a}}=-\dfrac{9}{\sqrt{a}}\)
5) \(\left(5-\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}\right)\left(2-\dfrac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)\left(a\ge0\right)\)
\(=\left(5-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\right)\left(2-\dfrac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(5-\sqrt{a}\right)\left(2-\sqrt{a}\right)=10-7\sqrt{a}+a\)
6) \(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)\left(a,b\ge0,a\ne9,b\ne25\right)\)
\(=\left(2-\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\dfrac{\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\)
3) Ta có: \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\sqrt{a}-2\)
=0
30B 31B 32D 33D 34C 35B 36B 37C 38B 39A 40D 41D 42A 43D 44D 45A 46C 47B 48C 49B 50C 51C 52A 53D 54B 55C 56A 57C 58A 59D 60B
Lời giải:
Gọi $I(a,b)$ là tâm đường tròn
$(I)$ tiếp xúc với $(d)$ nên: \(R=d(I,(d))=\frac{|a-b+1|}{\sqrt{2}}(*)\)
Mặt khác:
\(\overrightarrow{AB}=(6,-2)\)
\(H(9,4)\) là trung điểm $AB$. \(\overrightarrow{HI}=(a-9,b-4)\)
\(\overrightarrow{HI}\perp \overrightarrow{AB}\Rightarrow 6(a-9)-2(b-4)=0\)
\(\Leftrightarrow 3a-b=23\)
Thay vô $(*)$ thì $R=\frac{|24-2a|}{\sqrt{2}}$
Ta cũng có \(R=IA=\sqrt{(a-6)^2+(b-5)^2}=\sqrt{(a-6)^2+(3a-23-5)^2}\)
\(=\sqrt{10a^2-180a+820}\)
Vậy: \(\frac{|24-2a|}{\sqrt{2}}=\sqrt{10a^2-180a+820}\)
$\Leftrightarrow (24-2a)^2=2(10a^2-180a+820)$
$\Leftrightarrow 16a^2-264a+1064=0$
$\Leftrightarrow 2a^2-33a+133=0$
$\Leftrightarrow a=\frac{19}{2}$ hoặc $a=7$
Đến đây bạn tìm được tâm hình tròn, biết bán kính thì sẽ tìm được pt đường tròn.