K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

Ta có:2bd=c(b+d)

<=>2bd=bc+cd

Mà a+c=2b( theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc ( cùng bớt 2 vế cho cd)

=>a/b=c/d (đpcm)

24 tháng 8 2021

\(a+c=2b\) (*)

\(2bd=c\left(b+d\right)\)(**)

Thế (*) vào (**)

\(\left(a+c\right)d=c\left(b+d\right)\)

Theo tính chất phân phối ta có:

\(ad+cd=cb+cd\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

27 tháng 8 2023

thank you

 

1 tháng 4 2015

Ta có :

a + c = 2b         (1)

2bd = c.(b+d)     (2)

Thế (1) vào (2) , ta được;

(a+c).d = c.(b+d)

Thao tính chất phân phối, ta có:

ad + cd = cb + cd

\(\Rightarrow\) ad = cb \(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm)

1 tháng 4 2015

a + c = 2b         (1)

2bd = c.(b+d)     (2)

Thế (1) vào (2) , ta được;

(a+c).d = c.(b+d)

Thao tính chất phân phối, ta có:

ad + cd = cb + cd

$\Rightarrow$⇒ ad = cb $\Rightarrow$⇒$\frac{a}{b}=\frac{c}{d}$ab =cd ( đpcm)

4 tháng 1 2016

Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)

\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)

30 tháng 11 2024

c(b+d)2=2bd→bc+cd=2bd→bc+cd=(a+c)d→bc+cd=ad+cd

→bc=ad↔a/b=c/d

đặt a/b=c/d=k→a=ck,c=dk

(a+c/b+d)^8=(bk+dk/b+d)^8=[k(b+d)/b+d]^8=k^8

Thay tương tự ta đc điều phải chứng minh!

cho mik xin 1 like nha!!!

2 tháng 10 2016

2bd=c(b+d)

<=>(a+c)d=bc+cd

<=>ad+cd=bc+cd

<=>ad=bc

<=>\(\frac{a}{b}=\frac{c}{d}\)

<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

20 tháng 10 2021

\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)

\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

20 tháng 10 2021

Ta có: 

\(a+c=2b_{\left(1\right)}\)

\(2bd=c\left(b+d\right)_2\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)

\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )

\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))

\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )

\(\Rightarrow\)\(\left(đpcm\right)\)