K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

y2-2xy-3x-2=0 <=> (y-x)2-(x+1)(x+2)=0

=> y=x

th1: x=1

th2 x=2

theo tớ là vậy.

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

19 tháng 3 2017

\(2xy-x+y-2=0\)

\(\Leftrightarrow4xy-2x+2y-4=0\)

\(\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)-3=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(2x+1\right)\left(2y-1\right)=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Nếu \(2x+1=1\) thì \(2y-1=3\) \(\Rightarrow x=0\) thì \(y=2\)

Nếu \(2x+1=3\) thì \(2y-1=1\)  \(\Rightarrow x=1\) thì y = \(1\)

Nếu \(2x+1=-1\) thì \(2y-1=-3\) \(\Rightarrow x=-1\) thì \(y=-1\)

Nếu \(2x+1=-3\) thì \(2y-1=-1\) \(\Rightarrow x=-2\) thì y = \(0\)

Vậy \(\left(x;y\right)=\left(-2;0\right);\left(-1;-1\right);\left(0;2\right);\left(1;1\right)\)