chung minh rang : 1 / 2 ^ 2 + 1 / 3 ^ 2 + 1 / 4 ^ 2 + . . . + 1 / 100 ^ 2 < 99 / 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/2 = 0,5
2/3 = 0,666...
=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100
= 1,1,6666... + 3/4 + ... +99/100 > 1
=> 1/2 + 2/3 + ... + 99/100 > 1
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)
\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\le1\)
\(\Rightarrow1-\frac{1}{100}\le1\)
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
Dat A=1/3-2/32+3/33-4/34+...+99/399-100/3100
3A=1-2/3+3/32-4/33+...+99/398-100/399
3A+A=1-1/3+1/32-1/33+...+1/398-1/399-100/3100=4A
4A.3=3-1+1/3-1/32+...+1/397-1/398-100/399=12A
4A+12A=3-100/399-1/399-100/3100
16A=3-300/3100-3/3100-100/3100=3-403/3100<3
A<3/16
Chung to...
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
Hình như sai đề thì phải chứ mk làm ko đc !!!
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây