Cho tam giác ABC vuông tại B, có AB bằng 3cm, BC bằng 5cm. Hãy giải tam giác vuông ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
Áp dụng đlý Pytago vào tam giác ABC:
AC2=BC2+AB2
52=42+32
52=25
Vậy tam giác ABC là tam giác vuông tại B (dpcm)
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xet ΔABC vuông tại A và ΔMNP vuông tại M co
AB/MN=AC/MP
=>ΔABC đồng dạng vơi ΔMNP
b: ΔABC đồng dạng vơi ΔMNP
=>goc A=góc M; góc B=góc N; gócC=góc P
\(AC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{5\sqrt{34}}{34}\)
nên \(\widehat{A}\simeq59^0\)
hay \(\widehat{C}=31^0\)