Cho tam giác ABC cân tại A. Lấy M, N lần lượt là trung điểm của AB, AC
a. CM tứ giác BMNC là hình thang cân
b. cm tam giác AMN cân
c. Lấy D đối xứng B quan N, E đối xứng C qua M. cm tứ giác ADCB là hình bình hành
d. cm A là trung điểm của ED
e. Gọi H là giao điểm của CM và BN. Nối AH cắt BC tại Q. Lấy F thuộc BC sao cho CF = (1/4)BC, lấy K giao điểm của MN và AH. cm CK, QN, AF đồng quy
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành