cho tam giác ABC vuông tại A.Gọi M là trung điểm của cạnh AC.Vẽ AH là đường cao của tam giác ABC (H thuộc BC) , gọi D là điểm đối xứng với H qua M.
a. Chứng minh tứ giác AHCD là hình chữ nhật
b. Trên tia đối của tia HA lấy điểm E sao cho HE = HA Tứ giác HECD là hình gì? vì sao?
c. Chứng minh HD vuông góc với BE
d. Cho cạnh AH = 3 cm AC = 5cm Tính diện tích tứ giác AHCD
e. Tính độ dài DE
a/
Ta có
MA=MC; MH=MD (gt) => AHCD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
\(\widehat{AHC}=90^o\)
=> AHCD là HCN (Hình bình hành có 1 góc vuông là hình CN)
b/
Ta có ABCD là HCN
=> CD//AH => CD//HE (1)
CD=AH; AH=HE => CD=HE (2)
=> HECD là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau là hbh)
c/
Ta có
HA=HE => BC là trung tuyến của tg ACE (1)
\(BC\perp AH\Rightarrow BC\perp AE\)=> BC là đường cao của tg ACE (2)
Từ (1) VÀ (2) => tg ACE cân tại C (tg có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => AC=EC
C/m tương tự ta cũng có tg ABE cân tại B => AB=EB
Xét tg ABC và tg EBC có
AB=EB; AC=EC (cmt)
BC chung
=> tg ABC = tg EBC (c.c.c) => \(\widehat{BAC}=\widehat{BEC}=90^o\Rightarrow CE\perp BE\)
Mà HECD là hình bình hành => CE//HD
=> \(HD\perp BE\)
d/
Xét tg vuông AHC có
\(HC=\sqrt{AC^2-AH^2}=\sqrt{5^2-3^2}=4cm\)
\(\Rightarrow S_{AHCD}=AH.HC=3.4=12cm^2\)
e/
Ta có AH=HE => AH+HE=2AH=AE=2.3=6 cm
AHCD là HCN => HC=AD=4 cm (cạnh đối HCN)
Xét tg ADE có \(\widehat{DAE}=90^o\)
\(\Rightarrow DE=\sqrt{AD^2+AE^2}=\sqrt{4^2+6^2}=2\sqrt{13}cm\)