Biểu thức B = 2015 + | x + 4 | đạt giá trị nhỏ nhất khi x = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số phần tử của tập hợp H là
99 - 0 : 1 + 1 = 100 phần tử
đúng ko bạn
Vì |x+4| > 0
=> 2015 + |x+4| > 2015
=> B > 2015
Dấu "=" xảy ra <=> |x+4| = 0
<=> x+4 = 0
<=> x = -4
KL: Bmin = 2015 <=> x = -4
A nhỏ nhất khi
999-x nhỏ nhất
=>999-x=1 (vì nếu 999-x =0 thì A không xác định)
x=999-1
x=998
thay x vào A ta được:
A=2015-1015:(999-998)
=2015-1015:1
=1000
vậy GTNN của A là 1000 tại x=998
\(=8x+6x^2-12-9x\)
\(=6x^2-x-12=\left(-6\right)\left(-x^2+\frac{1}{6}x+2\right)\)
\(=\left(-6\right)\left[-x^2-2.\frac{1}{12}.\left(-x\right)+\left(\frac{1}{12}\right)^2-\left(\frac{1}{12}\right)^2+2\right]\)
\(=\left(-6\right)\left[\left(-x-\frac{1}{12}\right)^2+\frac{287}{144}\right]\)
\(=\left(-6\right)\left(-x-\frac{1}{12}\right)^2-\frac{287}{24}\ge-\frac{287}{24}\)
Vậy Min biểu thức = \(-\frac{287}{24}\) khi \(\left(-x-\frac{1}{12}\right)^2=0\Rightarrow-x-\frac{1}{12}=0\Rightarrow-x=\frac{1}{12}\Rightarrow x=-\frac{1}{12}\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
-4 nha bạn.
Vì /x+4/ >= 0 với mọi x thuộc R
=> 2015 + / x + 4/ >= 2015
=> B >= 2015
=>Bmin =2015 <=> x+4=0
<=>x= -4