\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)
\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)
\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)
\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x-2000=0\) ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )
\(\Leftrightarrow x=2000\)
Vậy x = 2000
Đây là cách của lớp 7 nha
@@ Học tốt
\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0
<=>\(\frac{x-2000}{2000}\)+ \(\frac{x-2000}{2001}\)+ \(\frac{x-2000}{2002}\)+ \(\frac{x-2000}{2003}\)=0
<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0
Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0
=> \(x-2000=0\)<=> \(x=2000\)
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
<=> \(\frac{x+4}{2000}+1+\frac{x+3}{2001}=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
<=> \(\frac{x+4}{2000}+\frac{x+4}{2001}=\frac{x+4}{2002}+\frac{x+4}{2003}\)
<=> \(\left(x+4\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> \(x+4=0\) do 1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0
<=> \(x=-4\)
Vậy...
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\)\(\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)\)\(=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2004}{2000}\right)+\left(\frac{x+2004}{2001}\right)\)\(=\left(\frac{x+2004}{2002}\right)+\left(\frac{x+2004}{2003}\right)\)
\(\Leftrightarrow\left(x+2004\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)\(=0\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=-2004\)
Sửa lại đề : Tìm x biết : \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Rightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2014}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left[\left(\frac{1}{2000}+\frac{1}{2001}\right)-\left(\frac{1}{2002}+\frac{1}{2003}\right)\right]=0\)
Mà : \(\frac{1}{2000}+\frac{1}{2001}>\frac{1}{2002}+\frac{1}{2003}\)
\(\Rightarrow x+2004=0\Rightarrow x=\left(-2004\right)\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Ta có :
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy ...
Ta có: \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
giúp với