K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2015

Sai roi lỏi giai la 

=> x^2 +x+x + 2+1

=> ( x+1)^2 +2 > 0

vay ko co nghiem

*** bài này tớ làm hơi tắt, cậu cứ phân tích ra là dacdac

29 tháng 4 2015

x^2+2x+3

=x^2+x+x+1+2

=(x^2+x)+(x+1)+2

=x.(x+1)+(x+1)+2

=(x+1).(x+1)+2

=(x+1)^2+2

->(x+1)^2+2>0

-> đa thức vô nghiệm

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

19 tháng 5 2017

Ta có: x2 + 2x + 2 = x2 + x + x + 1 + 1

= x(x + 1) + (x + 1) + 1

= (x + 1)(x + 1) + 1 = (x + 1)2 + 1

Vì (x + 1)2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R

Vậy đa thức x2 + 2x + 2 không có nghiệm.

7 tháng 5 2022

        Đặt Q(x) = 0 

=> x2 + 5x - 3 = 0 

=> x2 + 5x       = 3 

=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)

7 tháng 5 2022

     Đặt Q(x) = 0 

=> x2 + 5x - 3 = 0 

=> x2 + 5x       = 3 

 

=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$

Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.

14 tháng 5 2021

nghiệm là 2 mà

14 tháng 5 2021

\(x^2+2x-8=x^2+2x+1-9\)

mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)

\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)

giả sử đa thức trên có nghiệm khi 

Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)

Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm ) 

30 tháng 4 2019

X^2 NHÉ

30 tháng 4 2019

x2 + 2x + 2 ak ?

9 tháng 5 2019

A= 2x2 + 3 => 2x2 + 3 = 0 => 2x2 = -3 => x\(-\frac{3}{2}\)=> x ko có nghiệm

#Hk_tốt

#Ken'z

9 tháng 5 2019

ta thấy \(2x^2\ge0\forall x\)

=> \(2x^2+3\)> 0\(\forall x\)

=> A vô nghiệm

10 tháng 4 2021

Giả sử x=a là nghiệm nguyên f(a)

\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)

Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)

Mà \(-4a^4+4a^3-2a^2⋮2\)

\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)

\(\Rightarrow1⋮2\left(VL\right)\)

Vậy không tồn tại nghiệm nguyên của f(x)