cho tỉ lệ thức a/b=c/d.Chứng minh rằnga/a-b=c/c-d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a/b=c/d=k
suy ra a=bk;c=dk
suy ra a-b/a+b=bk-b/bk+b=b(k-1)/b(k+1)=k-1/k+1 (1)
c-d/c+d=dk-d/dk+d=d(k-1)/d(k+1)=k-1/k+1 (2)
từ 1 và 2 suy ra dpcm
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)( đpcm )
Sai đề rồi nha bn phải là : \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(=\frac{3a}{3c}\)
\(=\frac{3a+b}{3c+d}\)( Theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow\hept{\begin{cases}a=bt\\c=dt\end{cases}}\).
\(\frac{ac}{bd}=\frac{bt.dt}{bd}=t^2\)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bt\right)^2-\left(dt\right)^2}{b^2-d^2}=\frac{t^2\left(b^2-d^2\right)}{b^2-d^2}=t^2\)
Suy ra đpcm.
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )
Vậy ...
TL :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)
=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
\(\Rightarrow\)Vế trái = Vế phải
\(\Rightarrowđpcm\)
Cách 1: Sử dụng t/c dãy tỉ số bằng nhau ta được
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a-c}{b-d}=\frac{a+2c}{b+2d}\)
Cách 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\inℝ\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) thay vào ta được:
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
=> đpcm
cách 1
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
cách 2:
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;c=d.k\)
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)(*)
mà \(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}\)
Từ (*) \(\Rightarrow\frac{a^n-b^n}{c^n-d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)
Giả sữ:
a/b=c/d tương đương (#) (a+b)/(a-b) = (c+d)/(c-d)
Ta có:
(a+b)/(a-b) = (c+d)/(c-d)
# (a+b)(c-d) = (c+d)(a-b)
# ac-ad+bc-bd = ac-bc+ad-bd
# 2ad = 2bc
# a/b = c/d – điều phải chứng minh.
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d
cho a/b=k (1)=>a=bk
c/d=k=>c=dk
a+c/b+d=bk+dk/ b+d=k(b+d)/ b+d=k(2)
từ 1 và 2 => đfcm
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\left(ĐPCM\right)\)
Ta có:a/b=c/d
<=>1 - a/b=1 - c/d
<=>a/a - a/b=c/c - c/d
<=>a/a-b=c/c-d (đpcm)