K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

m = 1 thì pt có 1 nghiệm kép là -sqrt(2), nhỏ hơn -1 rồi ạ!

25 tháng 2 2022

\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m 

Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)

\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)

\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )

 

8 tháng 5 2021

phương trình có nghiệm khi:

\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0

<=>(2m+2)^2-4m^2+4\(\ge\)0

<=>4m^2+8m+4-4m^2+4\(\ge\)0

<=>8m+8\(\ge\)0

<=>8(m+1)\(\ge\)0

<=>m\(\ge\)-1

vậy m\(\ge\)-1 thì phương trình có nghiệm

8 tháng 5 2021

△≥0⇔(2m+2)^2-4(m^2-1)≥0

⇔4m^2+8m+4-4m^2+4≥0

⇔8m+8≥0

⇔m≥-1

Vậy phương trình có nghiệm khi m≥-1

15 tháng 3 2022

a, Thay vào ta được 

\(x^2-8x+10=0\)

\(\Delta'=16-10=6>0\)

Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)

b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)

Để pt có 2 nghiệm khi m >= -1 

15 tháng 3 2022

a)Thay m=5 ta có:

\(x^2-2\left(5-1\right)x+5^2-15=0\\ =>x^2-8x+10=0\)

Công thức nghiệm của pt bâc 2 ta có: b2-4ac=(-8)2-40=24>0

=>Phương trình có 2 nghiệm phân biệt:

xong r tính ra x1 và x2 :v

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

8 tháng 5 2021

cháu chịu

8 tháng 5 2021

cháu chịu

1 tháng 1 2022

\(đặt:x^2=t\ge0\)

\(\Rightarrow pt\Leftrightarrow m.t^2-2\left(m-1\right)t+\left(m-1\right)m=0\left(1\right)\)

\(với:m=0\Rightarrow\left(1\right)\Leftrightarrow-2\left(0-1\right)t=0\Leftrightarrow t=0\Rightarrow x=0\left(tm\right)\)

\(với:m\ne0\) pt đã cho có một nghiệm khi (1) có nghiệm duy nhất bằng 0 hoặc (1) có 1 nghiệm bằng 0 nghiệm còn lại âm

\(\Rightarrow\left[{}\begin{matrix}t=-\dfrac{b}{2a}=\dfrac{2\left(m-1\right)}{m}=0\Leftrightarrow m=1\left(tm\right)\\t1=0=>\left(1\right)\Leftrightarrow\left(m-1\right)m=0\Rightarrow m=0\left(ktm\right);m=1\left(tm\right)\end{matrix}\right.\)

từ 2TH trên \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt đã cho có 1 nghiệm