chứng minh rằng:
1+1/2+1/3+1/4+...+1/64 <6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A
=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/32
2A =1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1
⇒A<1/3
k cho minh nha
đặt A=1/2-1/4+1/8-1/16+1/32-1/64
2A=1-1/2+1/4-1/8+1/16-1/32
2A-A=1-1/64 A=63/64
Vì 63/64<1/3
nên 1/2-1/4+1/8-1/16+1/32-1/64<1/3
Vậy 1/2-1/4+1/8-1/16+1/32-1/64<1/3
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
1+1/2+1/3+1/4+...+1/64 =1-1/64=63/64<3
Nên
1+1/2+1/3+1/4+...+1/64 <6