K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016
Vì là GTLN nên (x;y) €{(0;2);(2;0);(1;1)} Từ đó suy ra x và y cùng đạt GTLN khi và chỉ khi x=y=1
4 tháng 8 2017

Nhân chéo y lên trừ đi rồi dùng denta là xong,dễ lắm

4 tháng 8 2017

y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)

Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)

Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0

suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

14 tháng 11 2021

\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)

Áp dụng Bunhiacopski:

\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)

NV
14 tháng 11 2021

\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)

\(A_{min}=0\) khi \(x=y=0\)