Chứng minh rằng 2^9+2^99 chia hết cho 100
toán dành cho học sinh có trình độ giải đây
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vao Chứng minh rằng 2^9+2^99 chia hết cho 100 toán dành cho ...
A= 1+2+3+...+1995
=1995+(1+1994)+(2+1993)+...+(996+999)+(997+998)
=1995+1995+1995+...+1995+1995
=1995x998\(⋮1995\)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
\(A=1+2^3+2^6+...2^{99}\)
\(\Rightarrow2^3A=2^3+2^6+.....+2^{101}\)
\(\Rightarrow8A-A=7A=2^{101}-1\)
\(\Rightarrow A=\frac{2^{101}-1}{7}\)
b) Ta gộp :
\(A=\left(1+2^3\right)+2^6\left(1+2^3\right)+......+2^{96}\left(1+2^3\right)\)
\(=9+2^6.9+...+2^{96}.9\)
\(=9\left(1+2^6+...+2^{96}\right)\)chia hết cho 9
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
Có phải là lớp 8 không vậy?
CMR: Tam giác có 3 cạnh bằng nhau là tam giác đều
Ta vẽ \(\Delta ABC\)có AB = AC = BC
Ta có AB = AC nên \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)(1)
và AB = BC nên \(\Delta ABC\)cân tại B => \(\widehat{A}=\widehat{C}\)(2)
Từ (1) và (2) => \(\widehat{A}=\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)đều (đpcm)
CMR: Tam giác có 2 cạnh bằng nhau là tam giác cân.
Ta vẽ \(\Delta ABC\)có AB = AC.
Kẻ AH \(\perp\)BC tại H.
\(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (gt)
Cạnh AH chung
=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) => \(\widehat{B}=\widehat{C}\)(hai góc tương ứng)
=> \(\Delta ABC\)cân tại A (đpcm)
huy hoàng t nói mãi mà mày éo hiểu ak ?
tại sao AB=AC thì suy ra ABC là tam giác cân " mày phải CM được AB=AC thì ABC là tam giác cân "
Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
Cách 2: P = 2^9 + 2^99 = 2^9 + (2^11)^9 = (2+2^11)(2^8 - 2^7.2^11 + ..-2.2^77 + 2^88)
Nhân tử thứ nhất 2 + 2^11 = 2050
Nhân tử thứ hai là một số chẳn = 2A (vì là tổng hiệu của các bội của 2)
=> P = 2050.2A = 4100.A chia hết cho 100