K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

x(x+y)=20 (1)

y(x+y)=5 (2)

Cộng từng vế các BĐT (1);(2)

=>x(x+y)+y(x+y)=20+5

=>(x+y)(x+y)=25

=>(x+y)2=25=52=(-5)2

TH1:x+y=5

có x(x+y)=20=>x=20:5=>x=4

    y(x+y)=5=>y=5:5=>y=1

TH2:x+y=-5

có x(x+y)=20=>x=20:(-5)=>x=-4

   y(x+y)=5=>y=5:(-5)=>y=-1

Vậy \(\left(x;y\right)\in\left\{\left(4;1\right);\left(-4;-1\right)\right\}\)

Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)

nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)

Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)

nên \(\dfrac{y}{5}=\dfrac{z}{8}\)

hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

mà 2x-5y+2z=100

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)

2 tháng 8 2021

Ta có:  \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)

Lại có:  \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\)   \(\left(2\right)\)

Kết hợp ( 1 ) và ( 2 ) ta có:     \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)

⇒  \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)

⇒  \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)

⇒  \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)

11 tháng 7 2015

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

    \(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{20}{5}=4\)

Suy ra: \(\frac{x}{2}=4\Rightarrow x=4\cdot2=8\)

              \(\frac{y}{3}=4\Rightarrow y=3\cdot4=12\)

12 tháng 1 2021

\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)

=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)

12 tháng 1 2021

\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)

Vậy...

20 tháng 7 2019

Ta có: x(x+y+z)=(-5) (1)

y(x+y+z)=9 (2)

z(x+y+z)=5 (3)

\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)

+ Với x+y+z=3 thì:

Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)

Từ (2) và (4) \(\Rightarrow\) y=3

Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)

+ Với x+y+z=-3

Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)

Từ (2) và (5) \(\Rightarrow y=-3\)

Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)

Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)

12 tháng 3 2023

Ta có : `x/5=y/3` và `x-y=-2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`

`=>x/5=-1=>x=-1.5=-5`

`=>y/3=-1=>y=-1.3=-3`

Vậy `x=-5;y=-3`

Áp dụng tính chất của DTSBN, ta được:

x/5=y/3=(x-y)/(5-3)=-2/2=-1

=>x=-5; y=-3

14 tháng 7 2021

Đề sai rồi bạn nhé

14 tháng 7 2021

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

17 tháng 8 2015

dat \(\frac{x}{5}=\frac{y}{4}=k\)-> x=5k va y=4.k

thay x=5k va y=4k vao x2-y2=1 ta duoc

(5k)2-(4k)2=1

25k2-16k2=1

9k2=1

k2=\(\frac{1}{9}=\left(\frac{1}{3}\right)^2\)

-> k=1/3 hay k=-1/3

voi K=1/3--> x=5.1/3=5/3 va y=4.1/3=4/3

voi K=-1/3->x=5.-1/3=-5/3 va y=4.-1/3=-4/3

 

8 tháng 11 2021

\(\dfrac{x}{y}=\dfrac{2}{5}=\dfrac{x}{2}=\dfrac{y}{5}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k2\\y=k5\end{matrix}\right.\)

mà \(xy=40\)

\(\Rightarrow2k.5k=40\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{5}=4\\\dfrac{x}{2}=\dfrac{y}{5}=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=8;y=20\\x=-8;y=-20\end{matrix}\right.\)

14 tháng 10 2020

Vì x, y > 0

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 ) 

x2 - y2 = 4

<=> ( 5k )2 - ( 4k )2 = 4

<=> 25k2 - 16k2 = 4

<=> 9k2 = 4

<=> k2 = 4/9

<=> k = 2/3 ( vì k > 0 )

=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)

14 tháng 10 2020

heeweghjk/k    uubunnnnnnnnnnbhtytcvbyu74xui  b                   bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu