Chứng minh rằng:S=1^4+2^4+3^4+....+2020^4 không là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán nâng cao của lớp 6 có cái này nè , em có làm một bài nhưng mà không biết làm bài này ==" thông cẻm . Nhục cái mặt quá :)
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Ta có A = 22 + 23 + 24 + ... + 220
2A = 23 + 24 + 25 + ... + 221
2A - A = ( 23 + 24 + 25 + ... + 221 ) - ( 22 + 23 + 24 + ... + 220 )
⇒ A + 4 = 221 - 22 + 4 = 221 - 4 + 4 = ( 24 )5 . 2 = ( ...6 )5 . 2 = ( ...6 ) . 2 = ( ...2 )
Vì không có số chính phương nào có tận cùng là chữ số 2 nên A + 4 không phải là số chính phương
a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)
=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)
=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)
=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)
b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên