K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2015

Ta thấy:

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

................

\(\frac{1}{19^2}<\frac{1}{18.19}\)

Cộng vế với vế ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{19^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{18.19}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}\)\(=1-\frac{1}{19}=\frac{18}{19}>\frac{18}{40}=\frac{9}{20}\)

Kết luận: ....>.....

8 tháng 5 2021

fan bé sans à

8 tháng 5 2021

wuttttt

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

Sửa đề: so sánh với 1/2

1/3^2<1/2*3

1/4^2<1/3*4

...

1/80^2<1/79*80

=>1/3^2+1/4^2+...+1/80^2<1/2-1/3+1/3-1/4+...+1/79-1/80=39/80<1/2

7 tháng 5 2021

undefined

Giải:

A=1/22+1/32+1/42+...+1/92

Ta có:

1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

...

1/92<1/8.9

⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9

A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9

A<1/1-1/9

A<8/9

 

Ta có:

1/22>1/2.3

1/32>1/3.4

1/42>1/4.5

...

1/92>1/9.10

⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10

A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

A>1/2-1/10

A>2/5

Vậy 2/5<A<8/9 (đpcm)

Chúc bạn học tốt!

22 tháng 10 2020

a) \(=\left(127+73\right)^2=200^2=40000\)

b) \(=18^8-\left(18^8-1\right)=1\)

c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1=5050\)

d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)

rồi giải ra như trên

10 tháng 2 2016

c1:A=B

c2:A=11

c3:B=1\20

c4:mk k bit

27 tháng 7 2021

Ta có: 1/20 < 1/19x20; 1/21 < 1/20x21; 1/22 < 1/21x22;...;1/39 < 1/38x39
➜ Do đó: A=1/20 + 1/21 + 1/22+;...;+ 1/39 < B= 1/19x20 + 1/20x21 + 1/21x22+;...;+ 1/38x39.
➤ Mặt khác: B= 1/19x20 + 1/20x21 + 1/21x22+;...;+ 1/38x39.
= 1/19 - 1/20 + 1/20 - 1/21 + 1/21 - 1/22 +;...; + 1/38 - 1/39= 1 - 1/39 = 38/39 < 1
➞ Vì A < B; B < 1 Nên A < 1
Vậy A < 1

Ta thấy:

\(2^2=2.2>1.2\Rightarrow\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(3^2=3.3>2.3\Rightarrow\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.................

\(9^2=9.9>8.9\Rightarrow\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)

=> Đpcm

8 tháng 5 2021

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> ...(tự viết)

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> 11111111111111111111110101010110000

HACK

 

 

Các phân số này đều nhỏ hơn 1

Thế nên A < 1

Bài này chỉ cần so sánh với 1 thôi

11 tháng 8 2017

Các số hạng của tổng A đều bé hơn 1 nên A < 1 

 Đây là quy tắc với các phân số cùng tử là 1 . 

Nhé !