So sánh : a) \(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
b) \(\frac{n}{2n+1}\) và \(\frac{3n+1}{6n+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh : a) \(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
b) \(\frac{n}{2n+1}\) và \(\frac{3n+1}{6n+3}\)
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)
\(\frac{n}{2n+1}\)=\(\frac{3.n}{3.\left(2n+1\right)}\)=\(\frac{3n}{6n+3}\)
Vì 6n+3=6n+3;3n<3n+1 nên \(\frac{n}{2n+1}\)<\(\frac{3n+1}{6n+3}\)