K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) \(\ge\)luôn đúng

=> đpcm

18 tháng 4 2016

Bài toán sai.

Ví dụ: a \(\ge\) b \(\ge\) c  1

Thì có a=1, b=1, c=1

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}<2\)

18 tháng 4 2016

xin lỗi mk nhầm đề!!

18 tháng 5 2017

khó quá

NV
9 tháng 1 2024

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=1\Rightarrow1-\dfrac{1}{1+a}=\dfrac{1}{1+b}+\dfrac{1}{1+c}\)

\(\Rightarrow\dfrac{a}{1+a}\ge\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\sqrt{\dfrac{1}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự ta có:

\(\dfrac{b}{1+b}\ge2\sqrt{\dfrac{1}{\left(1+a\right)\left(1+c\right)}}\) (2)

\(\dfrac{c}{1+c}\ge2\sqrt{\dfrac{1}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân vế (1);(2);(3):

\(\Rightarrow\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\ge8\)

Dấu "=" xảy ra khi \(a=b=c=2\)

18 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

a) ta có : 12.1 < 20 ; 12.2 > 20 và 12.4 > 50 nên các số tự nhiên x sao cho : x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50 là 24 , 36 , 48 .

b) ta có : 15.0 = 0 ; 15.1=15 > 0 và 15.2< 40 ; 15.3 > 40 nên các số tự nhiên x sao cho : x chia hết cho 15 và 0 < x < hoặc bằng 40 là 15 và 30

10 tháng 11 2017

Điều kiện của a và b là gì bạn

11 tháng 11 2017

a,b>0,mk lm dc rùi

9 tháng 1 2024

các bạn ơi !có đ hỏi tv k?bởi vì mình đang cần hỏi tv nha các cậu

9 tháng 1 2024

các bạn ơi

9 tháng 7 2019

Áp dụng bđt Cauchy:

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự:

\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)