Tìm x:
\(\frac{x}{2}+\frac{x+x}{3}+\frac{x+x+x}{4}=1\frac{11}{12}\)
(Nhanh, đúng, đầy đủ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 11/12 + 1/12 - 1/23 + 1/23 - 1/34 + ..... + 1/89 - 1/100 + x = 5/3
=> 11/12 + 1/12 - 1/100 + x = 5/3
=> 99/100 + x = 5/3
=> x = 5/3 - 99/100 = 203/300
Tk mk nha
1. \(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right)\times462-x=19\)
\(\left(\frac{13-11}{11.13}+\frac{15-13}{13.15}+\frac{17-15}{15.17}+\frac{19-17}{17.19}+\frac{21-19}{19.21}\right)\times462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\times462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)\times462-x=19\)
\(\frac{10}{231}\times462-x=19\)
\(20-x=19\)
\(x=20-19\)
\(x=1\)
2.b \(187-[[497-(8\times x+11)\div x]\div3-78]=150\)
\(187-[[497-(\frac{8\times x}{x}+\frac{11}{x})]:3-78]=150\)
\(187-[(497-8-\frac{11}{x}):3-78]=150\)
\(187-[(489-\frac{11}{x}):3-78]=150\)
\(187-[\frac{489}{3}-\frac{33}{x}-78]=150\)
\(187-[163-\frac{33}{x}-78]=150\)
\(187-85+\frac{33}{x}=150\)
\(102+\frac{33}{x}=150\)
\(\frac{33}{x}=150-102\)
\(\frac{33}{x}=48\)
\(x=\frac{48}{33}=\frac{16}{11}\)
ta có \(\frac{x}{12}=\frac{3}{x}\)
\(\Leftrightarrow x^2=12.3=36\)
\(\Leftrightarrow x=6\)hoặc \(x=-6\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1
\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)
<=> \(\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)
<=> \(94< x< 92\)vô lí
Vậy không tìm đc x thỏa mãn
\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)
\(=\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)
\(\Rightarrow94< x< 92\)
\(\Rightarrow\)ĐỀ SAI
lớp 5 này là dành cho h/s giỏi