CM : B = n.(n+1).(2n+1) CHIA HẾT CHO 6 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,25^{n+1}-25^n=25^n\left(25-1\right)=25^{n-1}\cdot25\cdot24=25^{n-1}\cdot100\cdot6⋮100,\forall n\)
\(b,n^2\left(n-1\right)-2n\left(n-1\right)=n\left(n-1\right)\left(n-2\right)⋮6,\forall n\)(vì là 3 số nguyên liên tiếp)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.24=25^{n-1}.6.4.25=25^{n-1}.6.100⋮100\forall n\in N\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^2\left(n-1\right)-2n\left(n-1\right)⋮2.3=6\forall n\in Z\)
Ta có : (4n + 3)2 - 25
= 16n2 + 24n + 9 - 25
= 16n2 + 24n - 16
= 8(2n2 + 3n - 2)
Mà n là số nguyên nên : (2n2 + 3n - 2) nguyên
=> 8(2n2 + 3n - 2) chia hết cho 8
Vậy (4n + 3)2 - 25 chia hết cho 8
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Ta có : n(n+1)(2n+1)=n(n+1)(2n+4-3)
=> B = 2n(n+1)(n+2)-3n(n+1)
Lập luận mỗi tích trên đều chia hết cho 6 => đpcm ()