chứng minh trong các số tự nhiên có dạng 2p+1 trong đó p là số nguyên tố , chỉ có 1 số là lập phương của 1 số tự nhiên khác.Tìm số đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt số cần tìm là 2p+1=k³ (k∈N)
<=> 2p=k³-1
<=> 2p= (k-1)(k²+k+1)
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.Mà k²+k+1= k(k+1)+1, k(k+1) chia hết cho 2 nên k(K+1)+1 không chia hết cho 2. Do đó
{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2